
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Cryptography: Graph Theory Implementation in Text

Encryption and Decryption

Albert Ghazaly - 13522150

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13522150@itb.ac.id

Abstract—Graph Theory is implemented in many companies

and industries as it is applicative for real world cases. As one of the

implementations mentioned above, graph theory has such great

role which even it can be applied to cryptography. In other terms,

graph theory can keep information safe by improving the security

of the information. However, how graph theory can be

implemented in cryptography is what will be shown deeply.

Keywords—Complexity Algorithm, Data Security, Graph

Theory, Number Theory

I. INTRODUCTION

Technology has been rapidly growing, leading to an era where

everyone can share their information to others separated in less

than a minute. The information that is mentioned is actually

data. The data itself is defined, referred to as Merriam-Webster

dictionary, as factual information (such as measurements or

statistics) used as a basis for reasoning, discussion, or

calculation, while data security, as defined by IBM, is the

practice of protecting digital information from unauthorized

access, corruption, or theft throughout its entire lifecycle. The

main focus of the paper is applying graph theory to encrypt and

decrypt data. The data that will be encrypted is a message

containing a alphabet, numbers, and symbols. The purpose of

the paper is to explain how graph theory also can protect privacy

data by implementing it to cryptography. Its impact will be

giving protections to the data as if anyone cannot receive,

modify, or even corrupt the data without permission.

In this paper, the algorithm will be not only explained, but

also be shown by the source code and the result. The purpose of

the paper is also implementing the concept besides inventing it.

This will help anyone to understand how the algorithm actually

works and how to use it. The concept of the algorithm is to

change the data or message as fast as possible because the

message can be as long as a paragraph. The speed of the process

also impacts on how well the algorithm is. The speed also

determines how the algorithm can actually be implemented in

real world technology as the information’s size cannot be

restricted. The time complexity of the algorithm will be

discussed in the paper as it is important for understanding and

analyzing the algorithm.

 The graph theory role in the encryption and decryption

algorithms is for the representation of each character of the data.

All of the numbers, alphabets, and symbols will be represented

as a whole graph. The encryption algorithm will take the data ,

manipulate it as same as the rule given in the algorithm, and

return graphs as the results. In other side, the decryption

algorithm will take input as graph, manipulate the graph as the

rule given in the algorithm, and return the original message. The

main concept of the graph that is used mostly is Hamilton graph.

It will be the base of the data structure in both encryption

algorithm and decryption algorithm. The concept holds a

different role in encryption and decryption algorithms.

The encryption algorithm can be described as (1) and the

decryption algorithm process can be described as (2).

(1)

(2)

II. THEORETICAL BASIS

1. Graph

1.1 Graph Definition and Types

In the terminology, referred to Collins Dictionary, a graph is

a mathematical diagram which shows the relationship

between two or more sets of numbers or measurements.

The objects inside a graph, called vertices or nodes, can be

connected to each other by an edge. Using that functionality,

graph can describe the relationship between sets of numbers

or measurements. Let G as a graph, V as a set of vertices, and

E a set of edge, the graph can be defined :

𝐺 = (𝑉, 𝐸)

For a set of n objects, the set V contains n vertices:

𝑉 = {𝑣1, v2, … , vn}
Where a set of m relations, the set E contains m edges:

𝐸 = {𝑒1, e2, …, em}
Graphs can be distinguished by orientation as directed graph

and undirected graph. A Directed graph is a graph that the edge

directs to a certain vertice. Which means if a vertice has an edge

directed to another vertice, the relation of the two object is one-

directional. For example, the predator and the prey has a

directional relationship which can be described as a directed

graph. The undirected graph is a graph that the edges don’t have

any direction. In the other words, the relationship between the

objects is both-directional.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig 2.1 Directed and undirected graph

Source: https://www.geeksforgeeks.org/what-is-the-

difference-between-an-undirected-and-a-directed-graph/

In the other hand, a graph can also be distinguished into a

simple graph or unsimple-graph. A simple graph is a graph that

does not contain multi-edge and loop whilst unsimple-graphs

does. A multi-edge is defined as having two edges to a same

node and loop can be defined as having edge to the node itself.

The unsimple-graph can also be multi-graph that contains multi-

edge and pseudo-graph which contains loop.

Fig 2.2 Example of unsimple-graph

Source: https://link.springer.com/chapter/10.1007/978-981-

19-0957-3_1

1.2 Graph Terminology

 1.2.1 Adjacence

 A vertex is called adjacent to another vertex if it is directly

connected to it.

1.2.2 Incidence

A vertex is called incident with an edge if the edge connects

to the vertex.

 1.2.3 Isolated Vertex

A vertex is called isolated if it has no edge connected to it.

1.2.4 Null Graph

 A Null graph is a graph that doesn’t contains any edges.

1.2.5 Degree

The degree of a vertex is the sum of how many edges are

connected to the vertex or how many edges are incident with

the vertex. The sum of all degrees in a graph will always be

even, with a quantity of two times the sum of all edges. Which

then can be derived that in a Graph G, the count of every

vertex with odd degrees will be even.

 1.2.6 Path A finite or infinite sequence of edges which joins

a sequence of vertices which are all distinct. A path with

length 𝑛 is a traversal sequence of vertex and edge

{𝑣0, 𝑒1, 𝑣1, 𝑒2, …, 𝑣𝑛−1, 𝑒𝑛, 𝑣𝑛}

1.2.7 Circuit

 A circuit is a path that ends on the same vertex that it started.

 1.2.8 Connection

A graph is termed "connected" if there's a path between every

pair of its vertices. If it lacks such connectivity, it's considered

a "disconnected" graph. In directed graphs, vertices 𝑢 and 𝑣

are "strongly connected" if there's a directed path from 𝑢 to 𝑣

and vice versa. If not strongly connected but connected in the

undirected version of the graph, they are termed "weakly

connected."

1.2.9 Subgraph

 A graph 𝐺1 = {𝑉1, 𝐸1} is a subgraph of another graph 𝐺

= {𝑉, 𝐸} if 𝑉1 is a subset of 𝑉 and 𝐸1 is a subset of 𝐸. The

complement of a subgraph 𝐺1, denoted as 𝐺2 = {𝑉2, 𝐸2},

satisfies 𝑉2 ⊆ 𝑉 and 𝐸2 = 𝐸 - 𝐸1. The components of a graph

refer to the maximum connected subgraphs within it.

1.2.10 Spanning Subgraph

A spanning subgraph contains all the vertices of the

original graph. Specifically, graph 𝐺1 = {𝑉1, 𝐸1} is a

spanning subgraph of 𝐺 = {𝑉, 𝐸} if 𝑉1 equals 𝑉 and 𝐸1 is a

subset of 𝐸.

1.2.11 Cut-Set

A cut-set in a connected graph 𝐺 is a set of edges. If these

edges are removed, the graph becomes disconnected,

resulting in two components.

1.2.12 Weighted Graph

A weighted graph is a graph that has a weight in every edges.

1.3 Special Graphs

1.3.1 Complete Graph (𝐾𝑛)

This type of graph ensures that every vertex connects to every

other vertex within the graph. In a complete graph with 𝑛

vertices, the total edges sum up to Σ|𝐸| = 𝑛(𝑛 - 1)/2.

Fig 2.3 Complete graph

Source:

https://archive.lib.msu.edu/crcmath/math/math/c/c477.htm

1.3.2 Circle Graph (𝐶𝑛)

This simple graph assigns a degree of 2 to each vertex which

means that all vertex’s degree is two.

https://www.geeksforgeeks.org/what-is-the-difference-between-an-undirected-and-a-directed-graph/
https://www.geeksforgeeks.org/what-is-the-difference-between-an-undirected-and-a-directed-graph/
https://link.springer.com/chapter/10.1007/978-981-19-0957-3_1
https://link.springer.com/chapter/10.1007/978-981-19-0957-3_1
https://archive.lib.msu.edu/crcmath/math/math/c/c477.htm

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig 2.4 Circle graph

Source: https://www.researchgate.net/figure/A-cycle-graph-

C-n-with-n-vertices-and-edges_fig1_363128491

1.3.3 Regular Graph (𝑅𝑟)

 In a regular graph, all vertices possess the same degree. A

regular graph with degree 𝑟 ensures that every vertex has a

degree of 𝑟. The total number of edges in a regular graph is

Σ|𝐸| = 𝑛𝑟/2, where 𝑛 is the number of vertices.

Fig 2.4 Regular graph

Source: https://www.geeksforgeeks.org/regular-graph-in-

graph-theory/

1.3.4 Bipartite Graph (𝐺(𝑉1, 𝑉2))

This graph comprises two vertex subsets, 𝑉1 and 𝑉2, where

each edge connects a vertex from 𝑉1 to a vertex in 𝑉2.

Fig 2.5 Bipartite graph

Source: https://www.geeksforgeeks.org/bipartite-graph/

1.3.5 Hamiltonian Graph

 Hamiltonian graph is a graph that contains a closed path

(cycle) visiting each vertex exactly once, starting and ending

at the same vertex. his closed path is also called a Hamiltonian

cycle.

Fig 2.5 Hamiltonian graph

Source: https://mathspace.co/textbooks/syllabuses/Syllabus-

1030/topics/Topic-20297/subtopics/Subtopic-266708/

1.3.6 Semi-Hamiltonian Graphs

 A semi-Hamiltonian path visits each vertex once, starting and

ending at different vertices. Semi-Hamiltonian graphs are

also known as traceable graphs.

Fig 2.6 Semi-Hamiltonian graph

Source: https://mathspace.co/textbooks/syllabuses/Syllabus-

1030/topics/Topic-20297/subtopics/Subtopic-266708/

2. Number Theory

Number theory delves into the realm of mathematics

dedicated to the exploration of integers and integer-based

functions. Integers, by definition, encompass whole numbers

without fractions, zero, comprising the set of positive natural

numbers or negative integers. For integers 𝑎 and 𝑏, 𝑎 divides 𝑏

if there exists an integer 𝑐 such that 𝑏 = 𝑎𝑐, denoted as 𝑎 | 𝑏,

where 𝑐 belongs to the set of integers, and 𝑎 ≠ 0.

2.1 Euclidean Theorem/Division

When an integer 𝑚 is divided by a positive integer 𝑛, the

division results in a quotient 𝑞 and a remainder 𝑟, satisfying the

equation 𝑚 = 𝑛𝑞 + 𝑟, where 0 ≤ 𝑟 < 𝑛.

2.2 Greatest Common Divisor (GCD)

The GCD of two integers, 𝑎 and 𝑏, is the largest integer 𝑑

such that 𝑑 | 𝑎 and 𝑑 | 𝑏, represented as 𝐺𝐶𝐷(𝑎, 𝑏) = 𝑑.

2.3 Euclidean Algorithm

This algorithm, starting with non-negative integers 𝑚 and 𝑛

(where 𝑚 ≥ 𝑛), continuously divides 𝑟 values until reaching 𝑟𝑛

https://www.researchgate.net/figure/A-cycle-graph-C-n-with-n-vertices-and-edges_fig1_363128491
https://www.researchgate.net/figure/A-cycle-graph-C-n-with-n-vertices-and-edges_fig1_363128491
https://www.geeksforgeeks.org/regular-graph-in-graph-theory/
https://www.geeksforgeeks.org/regular-graph-in-graph-theory/
https://www.geeksforgeeks.org/bipartite-graph/
https://mathspace.co/textbooks/syllabuses/Syllabus-1030/topics/Topic-20297/subtopics/Subtopic-266708/
https://mathspace.co/textbooks/syllabuses/Syllabus-1030/topics/Topic-20297/subtopics/Subtopic-266708/
https://mathspace.co/textbooks/syllabuses/Syllabus-1030/topics/Topic-20297/subtopics/Subtopic-266708/
https://mathspace.co/textbooks/syllabuses/Syllabus-1030/topics/Topic-20297/subtopics/Subtopic-266708/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

= 0. It determines the GCD using the sequence of remainders.

𝑟0 = 𝑚, 𝑟1 = 𝑛. With continuous division:

𝑟0 = 𝑟1𝑞1 + 𝑟2 , 0 ≤ 𝑟2 < 𝑟1

𝑟1 = 𝑟2𝑞2 + 𝑟3 , 0 ≤ 𝑟3 < 𝑟2

 …

𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛−1 + 𝑟𝑛, 0 ≤ 𝑟𝑛 < 𝑟𝑛−1

𝑟𝑛−1 = 𝑟𝑛𝑞𝑛 + 0

 as for every 𝑚 = 𝑛𝑞 +𝑟, 0 ≤ 𝑟 < 𝑛, 𝐺𝐶𝐷(𝑚, 𝑛) = 𝐺𝐶𝐷(𝑛, 𝑟),

thus:

 𝐺𝐶𝐷(𝑚, 𝑛) = 𝐺𝐶𝐷(𝑟0 , 𝑟1) = 𝐺𝐶𝐷(𝑟1 , 𝑟2) = ⋯ = 𝐺𝐶𝐷(𝑟𝑛−1

, 𝑟𝑛) = 𝐺𝐶𝐷(𝑟𝑛, 0) = 𝑟𝑛

2.4 Modulo Arithmetic

For every 𝑚 = 𝑛𝑞 + 𝑟 equation, modulo operations 𝑚 𝑚𝑜𝑑 𝑛

= 𝑟, with 0 ≤ 𝑟 < 𝑚. The modulo operation returns the remainder

when a number is divided by the modulus (𝑛).

2.5 Congruence

Given an integer 𝑛 > 1 as the modulus, two integers 𝑎 and 𝑏

are congruent modulo 𝑛 if their remainders are equal when

divided by 𝑛. The equation 𝑎 ≡ 𝑏 (mod 𝑛) defines this

relationship, illustrating that 𝑎 and 𝑏 differ by a multiple of 𝑛.

The equation can be written as a = kn + b.

2.6 Hash Function

A function used to transform data of varying sizes into fixed-

size outputs called hashes. Hash functions aim to efficiently

convert variable-length keys into uniform, fixed-length values,

ensuring minimal collisions (instances where different data

produce the same hash). The hash equation:

ℎ(𝐾) = 𝐾 𝑚𝑜𝑑 𝑚
maps input keys 𝐾 into a memory space 𝑚, returning their

respective hash values.

Fig 2.7 Hash function

Source: https://en.wikipedia.org/wiki/Perfect_hash_function

2.7 Cryptography

 Cryptography, derived from Greek roots, translates to

"secret writing." It involves the methods and exploration of

safeguarding communication between two or more parties from

external entities. Essentially, cryptography involves designing

and scrutinizing protocols aimed at preventing unauthorized

access by third parties to the communication between two

involved parties. The original text, known as plaintext or data,

undergoes encryption—a process where an algorithm

transforms it into ciphertext. This ciphertext holds no meaning

for an unauthorized entity lacking access to the decryption

algorithm, which reverses the process back to plaintext. One of

the earliest forms of substitution ciphers, the Caesar Cipher,

shifted plaintext letters by a fixed number to generate the

corresponding ciphertext.

Fig 2.8 Cryptography visualization

Source:

https://www.techtarget.com/searchsecurity/definition/cryptogr

aphy

2.8 RSA Algorithm

The RSA Algorithm, coined after its developers Ronald

Rivest, Adi Shamir, and Leonard Adleman in 1976, represents

an asymmetric cryptography technique. In this method, the

encryption and decryption keys are distinct from one another.

The encryption key, referred to as the public key, is openly

accessible and not kept confidential, similar to the decrypting

key or private key, which remains exclusively known to the key

owner. The primary process of key generation in the RSA

Algorithm involves several steps: Firstly, selecting two

undisclosed prime numbers, 𝑝 and 𝑞, and then computing 𝑛 =

𝑝𝑞 and 𝑚 = (𝑝 −1)(𝑞 − 1). While 𝑛 need not be kept secret, 𝑚

must remain confidential. Subsequently, choosing a number 𝑒

that is coprime to 𝑚, specifically 𝐺𝐶𝐷(𝑒, 𝑚) = 1, and deriving

the private key 𝑑 from the equation 𝑒𝑑 ≡ 1 (mod 𝑚). Then, the

encryption and decryption can be done using equation in Fig 2.9.

Fig 2.9 RSA Encryption and decryption

Source: https://www.geeksforgeeks.org/rsa-algorithm-using-

multiple-precision-arithmetic-library/

3. XOR Chiper

XOR Chiper uses XOR operator to the input to a certain target

and return the result. In cryptography, the simple XOR cipher is

a type of additive cipher, an encryption algorithm that operates

according to the principles:

A ⊕ 0 = A,

A ⊕ A = 0,

A ⊕ B = B ⊕ A,

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C),

(B ⊕ A) ⊕ A = B ⊕ 0 = B,

Where ⊕ denotes XOR operator.

https://en.wikipedia.org/wiki/Perfect_hash_function
https://www.techtarget.com/searchsecurity/definition/cryptography
https://www.techtarget.com/searchsecurity/definition/cryptography
https://www.geeksforgeeks.org/rsa-algorithm-using-multiple-precision-arithmetic-library/
https://www.geeksforgeeks.org/rsa-algorithm-using-multiple-precision-arithmetic-library/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

4. Time Complexity
In theoretical computer science, the time complexity is the

computational complexity that describes the amount of
computer time it takes to run an algorithm. Time complexity
is commonly estimated by counting the number of
elementary operations performed by the algorithm,
supposing that each elementary operation takes a fixed
amount of time to perform. The asymptotic notation, can be
used to measure time complexity of algorithm which are
Big-O notation, Omega notation, Theta notation.

4.1 Big-O notation (O-notation)
Big-O notation represents the upper bound of the running

time of an algorithm. Therefore, it gives the worst-case
complexity of an algorithm. If f(n) describes the running
time of an algorithm, f(n) is O(g(n)) if there exist a positive
constant C and n0 such that, 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

Fig 2.10 Big-O notation visualization

Source: https://www.geeksforgeeks.org/types-of-
asymptotic-notations-in-complexity-analysis-of-

algorithms/

4.2 Omega notation (Ω-notation)
Omega notation represents the lower bound of the

running time of an algorithm. Thus, it provides the best case
complexity of an algorithm. Let g and f be the function from
the set of natural numbers to itself. The function f is said to
be Ω(g), if there is a constant c > 0 and a natural number n0
such that c*g(n) ≤ f(n) for all n ≥ n0

Fig 2.11 Omega notation visualization

Source: https://www.geeksforgeeks.org/types-of-
asymptotic-notations-in-complexity-analysis-of-

algorithms/

4.3 Theta notation (Θ-notation)
Theta notation represents the upper and the lower bound

of the running time of an algorithm, it is used for analyzing

the average-case complexity of an algorithm. Let g and f be
the function from the set of natural numbers to itself. The
function f is said to be Θ(g), if there are constants c1, c2 > 0
and a natural number n0 such that c1* g(n) ≤ f(n) ≤ c2 *
g(n) for all n ≥ n0

Fig 2.12 Theta notation visualization

Source: https://www.geeksforgeeks.org/types-of-
asymptotic-notations-in-complexity-analysis-of-

algorithms/

III. PROPOSED ALGORITHM

A. Data Structure

Before beginning algorithms, we need to know how we save

and load the data either it is plain data or encrypted data. First,

we need to have string as an input that we want to encrypt.

Second, we need to have a list of graphs that will store the

encrypted message which has been turned into graph. The graph,

is an Hamiltonian graph and represented as adjacency matrix

with the value of the m[i][j] =0 if vertex I and j not connected,

m[i][j] = 1, if vertex I and j connected, m[i][j] = X, X>1 if vertex

I and j connected and have a weight of the edge that is X. Third,

we need to have a key that stores the first or start node of

Hamiltonian graph and the last or end node of the Hamiltonian

graph and create a list of key that stores the key. To run the

algorithm, we also need to have an array of integer with size of

seven (7x1) that will be used to turn ascii code (integer) into

binary which each of its digits will be stored in the array.

B. Encryption Algorithm

There are steps for the encryption algorithm, let list of graph is

G, list of key is K, the input string is S, and the array of integer

with size of seven is arr[7]:

1. Take a first character from the S, assume it to be char

2. turn char’s ascii code and store it to arr[7]

3. using the XOR algorithm, do XOR chipper of char’s ascii in

arr[7] to 127 (Binary code; 1111111). The result will reverse

each element of the binary in arr[7] from ‘0’ to ‘1’ and from

‘0’ to ‘1’.

4. turn the reversed binary code in arr[7] into a graph. First,

count how many ‘1’ in arr[7] and make it as the number of the

graph’s vertex. The graph now is a null graph because even

though there is a vertex, there is still no edge.

5. start from a random vertex (v0), count how many zero from

the first, start from the left (arr[1]), ‘1’ to the right(second)‘1’

in the arr[7] and add it with 1 .E.g: 1010011, zero count of first

‘1’ will be 2 because (1+1=2).

https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

6. assume the count of the first zero is Z, then store the Z in the

graph as the edge and its weight.

7. Redo steps 5 and 6, until the vertex reaches the final

Hamiltonian graph’s node. Remember when, choosing random

vertex, it must follow the Hamiltonian graph rule which means

the generated vertex cannot be same as the previous, cannot

create loop, and other Hamiltonian graph’s rule.

8. The result of the process is a Hamiltonian graph. Then, store

the key as a tuple of 2 integer, which are the first node of the

Hamiltonian graph and the final node of the Hamiltonian

graph.

9. After getting the graph and the key, store both of them each

in list of graph (G) and list of key (K).

10. Do the exact from step 1, but for the next character in the

S. After, the final character is encrypted then the encryption

process is finished. The result is the list of graphs (G) and the

list of key (K).

C. Decryption Algorithm

Assume we have the list of graphs (G) as encrypted message

and the list of key (K), then the decryption algorithm will be:

1. take one graph, the first, from the list of graphs (G)

2. Reverse the Encryption algorithm from step 4 to step 7

using the key in the list of key (K), by turning graph into the

binary code that is stored in a list of integer with size of seven

(7x1), assume it is named arr[7].

3. After getting the binary code in arr[7], turn the binary code

into a character (binary to ascii code).

4. Do XOR chipper again with 127 (binary code: 1111111) to

decrypt the character to its original character.

5. Store the decrypted character to a string or list of

characters. Repeat the exact to other graphs in the list of graphs

(G) and using the key in the list of keys (K) until all the graphs

decrypted.

6. If all graphs in G is decrypted, then the decryption

algorithm is complete with the return of list of characters or

string containing the original message.

IV. PROGRAM IMPLEMENTATION

A. Main Components

To implement the both algorithms, we need to provide proper

data structures to be used in the algorithm. Even though, there

are other components such as string and list of integer, the

main components used by the algorithms are four.

The main components of the program are:

1. Graph – The part that saves encrypted messages

as a graph. Represented as adjacency matrix, in

the program it is a dynamic matrix which is

needed to give flexibility of the size of the graph.

2. Key – The part that store the first and the last

node of the Hamiltonian graph. In the program, it

is a tuple of two integer.

3. List of graphs – This part stores the graphs.

Because we do not know how many graph are

there, then we use linked list as the data structure

of list of graph. So, we can append the linked list

if we want to add another graph.

4. List of keys – This part stores the keys. Because

we do not know how many keys are there, then

we use linked list as the data structure of list of

keys. So, we can append the linked list if we want

to add another key.

5. Message – This part is actually what we call

“encrypted message”, it contains a pointer to the

list of graphs and the length of the original

message.

B. Implementation Product

The implementation of the products require the

realization of the algorithm and the data structure.

Here are the program’s structure:

• main.c (this is not necessary)

• encrypt.c

• encrypt.h

• decrypt.c

• decrypt.h

• adt.h

• adt.c

Note that main.c is not necessary, but it is to

implement and test the encryption and decryption

program.

The implementation of the data structure is in adt.h file:

Fig 4.1 Datatype implementation 1

Source: Personal

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig 4.2 Datatype implementation 2

source: Personal

The result of the program can be viewed by running main.c file.

For testing, let the input be “MatDis” and “ha10:)”, then the

result will be:

Fig 4.3 Test case 1

Source: Personal

Fig 4.4 Test case 2

Source: Personal

 The full implementation of the repository can be

checked here https://github.com/albert260302/Graph-Theory-

implementation-in-Cryptography. The source code is in src

directory and there is a guide about the implementation in

readme file, especially about how to use the program.

C. Time Complexity

Let the number of characters of the input as n. Then the worst

case of the algorithm is when the total vertex gained from a

character is 7 which means that we need to create and

manipulate 7x7 adjacency matrix of the graph. To measure the

time complexity, let the measurements focuses on how many

operation of matrix assignment. Note that because graph is

undirected, so the assignment is two times each iteration.

M[i][j] = 0 M[j][i] = 0
Assume the worst case that every character inputted turns
into 7-vertex graph, we can calculate T(n) of the encryption
algorithm:

N = 1 -> 2*(7) = 28
N = 2 -> 2*(7) + 2*(7) = 28

…
N = n -> 2*(7) +… + 2*(7) = 2*7*n = 14*n (1)

Then, using (1) we can conclude that
T(n) = 14*n
T(n) = 14*n <= 15*n, n>=1

For C = 15 and N0 = 1: O(n)
 T(n) = 14*n
 T(n) = 14*n <= 13*n, n>=1
For C=13 and N0 = 1: Ω(n)

https://github.com/albert260302/Graph-Theory-implementation-in-Cryptography
https://github.com/albert260302/Graph-Theory-implementation-in-Cryptography

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Because Ω(f(n)), O(f(n)), and f(n) = n, then the theta
notation is Θ(n).
Thus, The time complexity result of encryption algorithm is
O(n), Ω(n), and Θ(n). The time complexity of decryption
algorithms will be same as it only reverse the step of the
encryption algorithm. It is also because the measurement
of this time complexity is how many matrix adjacency
assignment is.

V. REVIEW

The Encryption and decryption algorithm shows how the graph

theory is useful if we can utilize it. The encryption is not actually

only use graph theory but it also combines XOR chipper into it.

However, the main focus of the algorithm is the utilization and

implementation of graph theory. Both algorithms, encryption

and decryption, use Hamiltonian graph as a basis for the

algorithm and data structure. The data structure and algorithm

also implemented in C language because C is flexible in

manipulating and allocating memory. The algorithm can still be

improved by maximizing the efficiency of the code, especially

in memory usage as the algorithm does require lot of memories.

The result of time complexity O(n) cannot be interpreted as a

light or efficient algorithm because the algorithm may run fast,

but it still requires lot of memory allocation for linked list,

dynamic matrix, and array. That is why, we can improve the

algorithm not only in time complexity but also in memory cost.

VI. CONCLUSION

The Algorithm proposed shows how the input as string can be

encrypted not only to another string but also to another data

structure such as graph. The paper also mentions the

implementation of the algorithm by testing it and measuring the

time complexity. However, there is still components in the

algorithm and data structures which can be improved for the

time and memory efficiency.

VII. ACKNOWLEDGMENT

First of all, the Author would like to thank our lecturers in

Class 3, Mr. Rinaldi Munir and Mr. Monterico Adrian for giving

us numerous lesson. Not to forget, the Author would also like to

all the teachers in ITB for striving to share knowledge to us

while knowing it is not easy to handle many students at the same

time. Lastly, the Author would like to tell that The lesson that

you taught was the reason the Author can accomplish this paper.

REFERENCES

[1] https://mathspace.co/textbooks/syllabuses/Syllabus-1030/topics/Topic-

20297/subtopics/Subtopic-266708/, accessed 9 December 2023, 14.00

P.M.

[2] https://medium.com/@logsign/how-does-xor-cipher-work-xor-chipher-

encryption-b7ad316209ca, accessed 9 December 2023, 14.10 P.M
[3] https://www.acadpubl.eu/hub/2018-119-13/articles/40.pdf, accessed 9

December 2023, 20.30 P.M.

[4] https://www.techtarget.com/searchsecurity/definition/cryptography,
accessed 10 December 2023, 15.00 P.M.

[5] https://www.geeksforgeeks.org/time-complexity-and-space-complexity/,

accessed 10 December 2023, 15.20 P.M.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2023

Albert Ghazaly - 13522150

https://mathspace.co/textbooks/syllabuses/Syllabus-1030/topics/Topic-20297/subtopics/Subtopic-266708/
https://mathspace.co/textbooks/syllabuses/Syllabus-1030/topics/Topic-20297/subtopics/Subtopic-266708/
https://medium.com/@logsign/how-does-xor-cipher-work-xor-chipher-encryption-b7ad316209ca
https://medium.com/@logsign/how-does-xor-cipher-work-xor-chipher-encryption-b7ad316209ca
https://www.acadpubl.eu/hub/2018-119-13/articles/40.pdf
https://www.techtarget.com/searchsecurity/definition/cryptography
https://www.geeksforgeeks.org/time-complexity-and-space-complexity/

